Abstract

An electronic nose, a gas-phase multisensor system, was used to monitor precultivations of a recombinant tryptophan-producing Escherichia coli strain. The electronic nose signals showed a high correlation toward the main stages of the precultivations, namely, exponential growth, oxygen-limited growth, and glucose depletion. Principal component analysis (PCA) of the electronic nose signals was performed and shown to be useful for monitoring preculture progression. More importantly, PCA also allowed a qualitative assessment of the preculture performance during subsequent fed-batch cultivations. The electronic nose signals from the precultures showed, furthermore, a high correlation to the time of phosphate limitation and the tryptophan yield coefficient of the subsequent fed-batch cultivations, which allowed an accurate prediction of these process variables using partial least squares (PLS). The results demonstrate on data from 12 cultivations how the electronic nose can be a useful tool for the assessment of inoculum quality, thereby providing means of reducing batch-to-batch variation and increasing the productivity of bioprocesses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call