Abstract

Infection with Plasmodium vivax is usually treated with chloroquine, but parasites are often exposed inadvertently to sulfadoxine-pyrimethamine. To infer patterns of selection and spread of resistant parasites in natural populations, we determined haplotypes of P. vivax dihydropteroate synthase ( dhps ) alleles that could confer resistance to sulfadoxine. We amplified the P. vivax pyrophosphokinase ( pppk )- dhps region and its flanking intergenic regions from 92 contemporary global isolates. Introns and exons of pppk-dhps were highly polymorphic, as were the flanking intergenic regions. Eighteen haplotypes were associated with wild-type alleles, but several different putatively sulfadoxine-resistant alleles have arisen in areas of intensive sulfadoxine-pyrimethamine use. Even when they encoded changes to the same amino acid, these mutant alleles were associated with multiple different haplotypes. Two main conclusions can be drawn from these data. First, dhps alleles resistant to sulfadoxine have arisen multiple times under drug pressure. Second, there has been convergent evolution of a variety of alleles that could confer resistance to sulfa drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.