Abstract

The purpose of the present study was to investigate the myotoxicity of three buffers containing carboxylic acid groups (i.e., acetate, succinate, and citrate) as a function of their pH, capacity, and tonicity. The myotoxicity of these buffers in the range of pH 2–6 and 0.001–0.1 M buffer capacity was assessed using cumulative creatine kinase (CK) release from an isolated rodent muscle model following injection. Phenytoin and 0.9% NaCl injection were used as positive and negative controls, respectively. Buffer solutions were prepared. A lower pH and higher buffer capacity was linked to increased myotoxicity for the acetate buffers. However, for succinate and citrate buffers, pH appeared to influence the extent of myotoxicity, whereas buffer capacity did not seem to have an effect. When either NaCl or trehalose was used as a tonicity-adjusting agent at pH 6, isotonic 0.01 M buffer solutions dramatically lowered the cumulative CK release compared to those that were not isotonic. Isotonic succinate buffers displayed the lowest myotoxicity, whereas citrate buffers displayed the highest values. Citrate buffers containing three carboxylic acid groups showed higher myotoxicity than succinate buffers and acetate buffers at 0.001 and 0.01 M buffer capacities, whereas acetate buffer produced higher cumulative CK release than citrate and succinate buffers at 0.1 M buffer capacity. The myotoxicity of pharmaceutical buffers containing carboxylic acid groups appears to be directly affected by lowering the pH of the solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call