Abstract

The overarching goal of agricultural sciences is to optimize production technology to rationalize the use of production resources, energy, and space. Due to its high fertilization and water requirements, the vine is a plant with a high potential for greenhouse gas (GHG) emissions. The modifying factor in the production technology is plantation management. To reach the assumed goal, a field experiment was conducted in the years 2001–2020, and the following training systems were used: multi-arm fan system (A) trunk height <30 cm, (B) 80 cm, (C) 120 cm, one-side multi-arm, paired planting (D) 120 cm, (E) 140 cm. The total amount of GHGs emitted in vine cultivation was calculated according to ISO 14040 and ISO 14044 standards. The system boundaries were: establishing the plantation, the production and use of fertilizers and pesticides, energy consumption for agricultural treatments, and gas emissions from the soil. The amount of GHG emissions for cultivation using the systems A, B, C ranged from 426.77 to 556.34 kg of CO2-eq Mg of yield−1, while in the case of D and E systems, the value was approx. 304.37 to 306.23 CO2-eq Mg of yield−1. When comparing this stage with total annual emissions related to cultivation (for 1 ha), the amount of emitted GHGs at this stage is from approx. 42% to 58% higher than from annual emission related to cultivation. Concrete poles are the main element related with GHG emission during stage of plantation establishment, from 97 to 98% of emission. In the case of annual production, nitrogen fertilizers are responsible for approx. 36%. Moreover, the results show that systems D and E increased the average annual fruit yield (per 19 years of research) by approx. 68% compared to the A, B, C systems. There was no difference in the yield of plants with different height of shoots in the D and E systems. The “one-side, multi-arm, paired planting system” was characterized by the highest production and environmental efficiency.

Highlights

  • A strategic element of modern agriculture is the rational use of means of production in the context of sustainable development

  • The aim of the study was to assess the environmental impact of grape cultivation in various cultivation technologies

  • The calculation was performed based on results from an experiment conducted in the years 2001–2020 in northern Tajikistan, in Sughd Region, Ghafurov district

Read more

Summary

Introduction

A strategic element of modern agriculture is the rational use of means of production in the context of sustainable development. Grapes are grown primarily in areas with favorable climatic conditions, the most important of which are the temperatures during the growing season and the level of insolation [3]. These parameters have a critical impact on the content of active sub-stances in the fruit, which determines their taste and suitability for the winemaking process [4]. Vineyards are often planted on the slopes in order to maximize the plants’ use of insolation Cultivation in such conditions requires more means of production than cultivation in fertile soils with high agricultural value. Even small changes in the cultivation technology can prove beneficial, reducing the level of GHG emissions per area unit or mass unit of produce [10,11]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.