Abstract
In this work, we optimized the synthesis of HfO2 nanoparticles (NPs) with a nonaqueous sol-gel method assisted by microwave heating, with a direct surfactant-free extraction and stabilization in water. To tune the structural, morphological, and photophysical properties, we explored the influence of reaction time, heating temperature, and type and concentration of a salt precursor. The controlled size, shape, crystallinity associated with high stability, a good yield of production, and stabilization in water without any surfactant modification of these HfO2 NPs open possibilities for future optoelectronic and biomedical applications. The investigation of their optical properties, revealed a high absorption in the UV range and the presence of a large band gap, originating in transparency at visible wavelengths. Under UV excitation, photoluminescence (PL) shows three emission bands centered at 305, 381, and 522 nm and are assigned to the vibronic transition of an excited OH•* radical or to a self-trapped exciton, to threefold oxygen vacancies VO3 with recombination to the valence band, and to defect level, respectively. The presence of oxygen vacancies associated with PL properties is particularly attractive for optoelectronic, photocatalysis, scintillator, and UV photosensor applications. Finally, by changing the nature of the hafnium precursor salt, using hafnium ethoxide or hafnium acetylacetonate, low-crystallized and aggregated NPs were obtained, which requires further investigation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.