Abstract

BackgroundTrichophyton mentagrophyte (TM), a zoonotic pathogen, has been endangering public health due to emerging drug resistance. Although increased attention is paid to this issue, there is very limited research available on drug resistance in TM. In this study, we studied the gene and proteomic changes, morphological changes, cellular fat localization, fat content changes, and biofilm of TM treated with different substances.ResultsThe TM growth curve showed a positive correlation with the concentration of Fenarimol (FE), genistein (GE), clotrimazole (KM), and Miconazole nitrate salt (MK). The morphology of TM cells changed in different degrees after treatment with different substances as observed by TEM and SEM. The results showed that under KM and berberine hydrochloride (BB) treatment, a total of 3305 differentially expressed genes were detected, with the highest number in the KM-treated group (578 up-regulated and 615 down-regulated). A total of 847 proteins and 1850 peptides were identified in TM proteomics. Nile red staining showed that the fat content of TM was significantly higher in the BB-, ethidium bromide- (EB), FE-, KM-, Adriamycin hydrochloride- (YA), and MK-treated group compared to the control group. Results of the biofilm thickness showed that it gradually increased under treatment with specific concentrations of KM or BB, which may be related to the up-regulation of ERG25 and CYP related gene proteins.ConclusionsIt is suggested that in order to effectively deal with dermatomycosis caused by TM, it is necessary to inhibit the expression of ERG25 and CYP related genes and fat metabolism, which can result in the inhibition of the production of biofilm by the fungus and solve the problem of fungal drug resistance in clinical settings.

Highlights

  • Trichophyton mentagrophyte (TM), a zoonotic pathogen, has been endangering public health due to emerging drug resistance

  • The growth of TM was slightly stronger at a low concentration of both ethidium bromide (EB) and GR, compared to that of medium and high concentrations, the differences were minor in GR

  • The fluorescence intensity of the Nile red staining was consistent with confocal microscopy observations; the fat content of TM in the berberine hydrochloride (BB), EB, FE, KM, YA, and MK-treated groups were significantly higher compared to that of the control group, implying that the results of the Nile red staining were reliable

Read more

Summary

Introduction

Trichophyton mentagrophyte (TM), a zoonotic pathogen, has been endangering public health due to emerging drug resistance. We studied the gene and proteomic changes, morphological changes, cellular fat localization, fat content changes, and biofilm of TM treated with different substances. Trichophyton mentagrophyte (TM), a zoonotic pathogen, has been endangering public safety as dermatomycosis caused by TM is one of the most common skin diseases in the rabbit industry. It mainly damages the fur and affects its quality. To further analyze the mechanism of drug resistance in TM exposed to these substances, the content of ergosterol was analyzed and the Nile red staining and biofilm thickness were observed through a confocal microscope. The results lay a foundation for scientific prevention and treatment of dermatomycosis caused by TM

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.