Abstract

The low cost and ease of use of inertial measurement units (IMUs) make them an attractive option for motion analysis tasks that cannot be easily measured in a laboratory. To date, only a limited amount of research has been conducted comparing commercial IMU systems to optoelectronic systems, the gold standard, for everyday tasks like stair climbing and inclined walking. In this paper, the 3D joint angles of the lower limbs are determined using both an IMU system and an optoelectronic system for twelve participants during stair ascent and descent, and inclined, declined and level walking. Three different datasets based on different hardware and anatomical models were collected for the same movement in an effort to determine the cause and quantify the errors involved with the analysis. Firstly, to calculate software errors, two different anatomical models were compared for one hardware system. Secondly, to calculate hardware errors, results were compared between two different measurement systems using the same anatomical model. Finally, the overall error between both systems with their native anatomical models was calculated. Statistical analysis was performed using statistical parametric mapping. When both systems were evaluated based on the same anatomical model, the number of trials with significant differences decreased markedly. Thus, the differences in joint angle measurement can mainly be attributed to the variability in the anatomical models used for calculations and not to the IMU hardware.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call