Abstract

The effects of mineral admixture type on the behaviour of self-consolidating concrete (SCC) in magnesium sulphate environments were investigated over the course of 4years of exposure. Three mineral admixtures (limestone filler, fly ash and natural pozzolan) representing a wide range of compositions were used in the study. Twelve formulations covering three strength classes (30, 50 and 70MPa) and four concrete mixtures were studied. Mass loss with physical deterioration, and dimensional and compressive strength changes due to magnesium sulphate attack were determined through microstructural analysis. The sulphate profiles of sulphur, magnesium, silicon, calcium and aluminium elements were also quantified through analyses of the samples. A complementary analysis by phase assemblages was performed on the degraded layers of concrete specimens. These test results indicate that the mineral admixture type greatly affects the durability performance of SCC under magnesium sulphate exposure. Among the tested mineral admixtures, natural pozzolan showed better long-term durability performance in the magnesium sulphate environment. The interaction between vibrated concrete and SCC is related to the nature of the mineral admixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.