Abstract

High-alloyed Cr–Ni-based two-phase stainless steel (SS) cast alloys are commonly used in nuclear power plants. The mechanical equipment in these facilities can contribute to a reduction in its resistance to stable crack growth as a result of extended operating times and high temperatures. The toughness of these materials strongly depends on their delta (δ) ferrite content, which spinodally decomposes into two phases with different ratios of Cr and Ni at a relatively low (slightly above 300 °C) temperature. This temperature is similar to the operating temperature of the vital parts, for example, the coolant system. The formation of two phases with the same crystal structure but different lattice parameters causes internal elastic stresses that result in a hardness increase and an impact-toughness decrease. The result is an increased risk of crack formation in the stress–concentration zones such as the critical regions of different welded joints (e.g. “L, T, K and X” shapes). The values of the critical stress intensity factor change according to its position along the crack contour. Therefore, the aim of our study was to assess the influence of the materials’ changes on the crack extension and the decrease of the primary pipeline’s bearing capacity by taking account of the increased temperature and time of operation for the given loading conditions. The SINTAP (European Structural Integrity Assessment Procedure) was used for this assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call