Abstract
Interactions between pharmaceuticals and aquatic colloids are a key process regulating their environmental fate, but poorly understood. A validated cross-flow ultrafiltration (CFUF) system was used to isolate river colloids and to determine the partition of selected pharmaceuticals between colloidal (>1 kDa but <0.7 microm) and dissolved phases (<1 kDa) by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The kinetics of pharmaceutical binding to colloids was rapid, reaching equilibrium within 5 min. The mass balance of chosen pharmaceuticals through CFUF system was satisfactory for propranolol, sulfamethoxazole, meberverine, carbamazepine, indomethacine, diclofenac, and meclofenamic acid. The partition coefficient normalized to colloidal organic carbon content (Kcoc) varied from 5.45 x 10(4) to 7.54 x 10(5) mL/g for the chosen pharmaceuticals, which are greater than those for endocrine disrupting chemicals (EDCs), suggesting substantially stronger colloidal interactions with pharmaceuticals than with EDCs. Linear relationships were demonstrated between log-Kcoc, and pharmaceutical properties such as log Kow (octanol-water partition coefficient), highlighting the importance of compound hydrophobicity in controlling their binding with colloids. Such a finding is in contrast to that for EDCs whose Kcoc values were independent of their Kow values. The CFUF-LCMS technique has the potential to become a widely applicable tool for quantifying the distribution of emerging organic pollutants between nanoparticles and the dissolved phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.