Abstract

Cyanobacterial proliferation and toxin production in water bodies around the world have led to global concern about the control of these issues. Indigenous bacteria have been shown to degrade the cyanotoxin microcystin (MC) in natural environments. The mlr cluster has been widely used as a marker for microcystin biodegradation; however, recent studies have shown that alternative pathway(s) also contribute to the natural removal of MCs in the ecosystem. The main objective of this study is to provide initial insights concerning how key abiotic factors affect the rate of MC biodegradation via alternative pathway(s) and to provide a detailed comparison with the mlr+ pathway. Our results show that nutrient inputs and previous exposure to MCs trigger changes in the rate of MC degradation via alternative pathway(s), while temperature does not produce any significant change. Our results further indicate that the alternative pathway(s) may be less efficient at degrading MCs than the mlr+ pathway, suggesting the importance of microbial diversity in determining the half-life of MCs in the water column.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.