Abstract

Civilization diseases, cancer, frequent mutations of viruses and other pathogens constitute the need to look for new drugs, as well as systems for their targeted delivery. One of the promising way of using drugs is supplying them by linking to nanostructures. One of the solution for the development of nanobiomedicine are metallic nanoparticles stabilized with various polymer structures. In this report, we present the synthesis of gold nanoparticles, their stabilization with polyamidoamine (PAMAM) dendrimers with ethylenediamine core and the characteristics of the obtained product (AuNPs/PAMAM). The presence, size and morphology of synthesized gold nanoparticles were evaluated by ultraviolet-visible light spectroscopy, transmission electron microscopy and atomic force microscopy. The hydrodynamic radius distribution of the colloids was analyzed by dynamic light scattering technique. Additionally, the cytotoxicity and changes in mechanical properties of human umbilical vein endothelial cell line (HUVEC) cells caused by AuNPs/PAMAM were assessed. The results of studies on the nanomechanical properties of cells suggest a two-step changes in cell elasticity as a response to contact with nanoparticles. When using AuNPs/PAMAM in lower concentrations, no changes in cell viability were observed and the cells were softer than untreated cells. When higher concentrations were used, a decrease in the cells viability to about 80% were observed, as well as non-physiological stiffening of the cells. The presented results may play a significant role in the development of nanomedicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call