Abstract
Among the various renewable energy-based technologies, photovoltaic panels are characterized by a high rate of development and application worldwide. Many efforts have been made to study innovative materials to improve the performance of photovoltaic cells. However, the most commonly used crystalline panels also have significant potential to enhance their energy yield by providing cooling and cleaning solutions. This paper discusses the possibility of introducing a dedicated direct-water cooling and cleaning system. As assumed, detailed schedules of the operation of the developed direct water cooling and cleaning system should be fitted to actual weather conditions. In this context, different cooling strategies were proposed and tested, including different intervals of opening and closing water flow. All tests were conducted using a dedicated experimental rig. 70 Wp monocrystalline panels were tested under laboratory conditions and 160 Wp polycrystalline panels were tested under real conditions. The results showed that introducing a scenario with a 1-min cooling and a 5-min break allowed for proving the panel’s surface temperature lower than 40 °C. In comparison, the temperature of the uncooled panel under the same operating conditions was close to 60 °C. Consequently, an increase in power generation was observed. The maximum power increase was observed in July and amounted to 15.3%. On the other hand, considering selected weeks in May, July, and September, the average increase in power generation was 3.63%, 7.48%, and 2.51%, respectively. It was concluded that the division of photovoltaic installation allows reasonable operating conditions for photovoltaic panels with a lower amount of energy consumed to power water pumps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.