Abstract
We have investigated the performance of the new optimized exchange functional (OPTX) developed by Handy and Cohen [Mol. Phys. 99, 403 (2001)] for predicting geometries, heats of reaction, and barrier heights for twelve organic reactions (six closed-shell and six radical). OPTX has been used in conjunction with, among others, the well-known Lee–Yang–Parr (LYP) correlational functional to form two new functionals, OLYP and O3LYP. These are similar to the well-established BLYP and B3LYP functionals, respectively, with OPTX replacing the standard Becke exchange functional, B88. Our results strongly support claims made by their developers that OLYP is superior to BLYP, and essentially renders it obsolete. The computed OLYP heats of reaction, barrier heights, and even molecular geometries (with larger basis sets), are comparable with, if not better than, the corresponding B3LYP values. The O3LYP functional is overall better than B3LYP, albeit not by much. Both OLYP and O3LYP are among the best functionals currently available; the performance of OLYP in particular is noteworthy given that this functional includes no exact exchange.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.