Abstract
In this study, we employed a bench scale A2O-MBR (anaerobic–anoxic–oxic membrane bioreactor) system to systematically investigate the behavior and distribution of silver nanoparticles (AgNPs) in the activated sludge. The results showed that AgNPs would aggregate and form Ag–sulfur complexes in the activated sludge, and the dissolved silver only reached 13.6μg/L when AgNPs of 5mg/L was spiked into the A2O-MBR. The long-term mass balance analysis showed that most of the silver contents were accumulated in the bioreactor and wasted excess sludge. Only a small fraction (less than 0.5%) of silver could get across the hollow fiber membranes with 0.1μm nominal pore size in the effluent. In addition, the comparison between total AgNP concentration in aerobic sludge supernatant and effluent suggested that the membrane modules played a role in controlling the discharge of AgNPs into the effluent, especially under a higher influent concentration of AgNPs. Our results also showed that the adsorbed AgNPs or silver complexes in activated sludge still could release dissolved silver at the ambient pH. Thus, since activated sludge could be a sink for AgNPs, the risks of AgNPs in wasted excess sludge during utilization and disposal should be further studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.