Abstract

Several research works in the literature have focused on understanding the post-infarction ventricular remodelling phenomenon, but few works have considered the evaluation of the elastic behaviour of the cardiac tissue after a myocardial infarction. This paper presents an investigation focused on predicting the elastic performance of the human heart after a left ventricular apical infarction. The aim is to understand the elastic alterations of the cardiac fibres at different periods after an apical infarct. For this purpose, a hybrid method based on pressure and volume measurements of the left ventricle (LV) at different periods of ventricular remodelling, and the Finite Element Method (FEM), is developed. In addition, several performance indexes are defined to evaluate the heart performance during the ventricular remodelling process. The results show that during the first 2 weeks after a heart infarction, the cardiac fibres must support a much higher structural overload than during normal conditions. This structural overload is proportional to the aneurysm size but diminishes with the time, together with a significant reduction of the ventricular pumping capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call