Abstract
The ultimate goal of any soil remediation process should be not only to remove the contaminant(s) from the polluted site but to restore soil health as well. In consequence, reliable indicators of soil health are needed if we are to properly evaluate the efficiency of a soil remediation process. The aim of the current work was to determine the effect of metal phytoextraction, through the utilization of the Zn hyperaccumulator T. caerulescens, on biological parameters of soil health, on the assumption that biological indicators of soil health might be valid monitoring tools to assess the efficiency of a metal phytoextraction process. To this end, a short-term microcosm phytoextraction study was carried out, with two heavy metal polluted soils collected from an abandoned mine, to determine the effect of metal phytoextraction on soil biological parameters. Higher values of biomass C, basal respiration, substrate induced respiration, and β-glucosidase activity were observed in the presence of T. caerulescens plants, as compared to unplanted pots. Our data confirm the great capacity of T. caerulescens to phytoextract Zn from polluted soils and, interestingly, suggest that metal phytoextraction has indeed a beneficial effect on soil biological activity. It was concluded that the revegetation of these metal polluted soils with T. caerulescens could help activate their biochemical and microbial functionality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.