Abstract
The powertrain efficiency of most small unmanned air vehicles (SUAVs) depend on the aerodynamic performance of multiple propellers, which must be modelled before its optimisation. To predict propeller performance while capturing interaction effects not accountable for by momentum theories, the Virtual Blade Model (VBM) can be used at much lower costs than conventional Computational Fluid Dynamics (CFD). However, the accuracy of VBM depends on aerofoil polar data that often misrepresent rotational and three-dimensional effects that influence small propellers. In an attempt to expand the capabilities of VBM, it is a common practice to introduce correction models for aerofoil coefficients in its formulation, but the actual effectiveness of such approach for small propeller analysis remains unassessed. In this paper, VBM in OpenFOAM was extended with stall delay and tip loss models, while aerodynamic databases at low Reynolds numbers were built with XFOIL and extrapolated to the full angle of attack range. The accuracy of three VBM versions was validated against wind tunnel measurements of two off-the-shelf small propellers. For the lower-pitch propeller, thrust and power at low advance ratios and efficiency at high advance ratios were significantly improved by the stall delay model. But for the higher-pitch propeller, thrust and power were overpredicted with extended versions of VBM under most operating conditions, which is attributable to an excessive shift of effective angles of attack to the post-stall region by the stall delay model and to uncertainties in extrapolated polar data. The results suggest that without reliable procedures for obtaining polar data, correction models should be implemented in VBM only for the simulation of low-pitch propellers operating at low advance ratios, given their avoidance of the effective angle of attack range where XFOIL and extrapolation methods are mainly expected to fail in predicting lift behaviour.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.