Abstract

This study aimed to investigate the effects of Thermal-Assisted Machining (TAM) on SKD11 alloy steel using titanium-coated hard-alloy insert cutting tools. The microstructure, material hardness, chip color, cutting force, chip shrinkage coefficient, roughness, and vibration during TAM were evaluated under uniform cutting conditions. The machining process was monitored using advanced equipment. The results indicated that thermal-assisted processing up to 400 °C did not alter the microstructure and hardness of the SKD11 alloy steel. However, a significant variation in chip color was observed, indicating improved heat transfer through TAM. The cutting force, vibration amplitude of the workpiece, and surface roughness all decreased with increasing TAM. Conversely, the chip shrinkage coefficient of the machined chips tended to increase due to the high temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call