Abstract

Urban growth often results in changes in the urban hydrological cycle, causing impacts on water availability in densely populated regions. The water isotopologues can provide relevant information about the origin of water under different hydrogeological scenarios, aiding to implement better strategies for water conservation in coupled natural-urbanized environments. In this study, the isotopic compositions of multiple water sources were assessed in a pristine (Ipanema National Forest, FLONA) and an urbanized (Lavapés catchment, SOR) watershed located in the Sorocaba River basin (State of São Paulo, Southeastern Brazil), seeking to understand the causes of isotopic variability and to determine the relative contribution from different sources to streamflow, using the Bayesian mixing model approach. Differences in isotopic composition were observed, as FLONA yielded the most depleted water (ca. -7.5 ‰ [Formula: see text]18O for surface and groundwater and ca. + 11.0 ‰ d-excess), while SOR yielded the most enriched water (ca. -5.5‰ [Formula: see text]18O for surface and groundwater and -3.8‰ [Formula: see text]18O for the water supply system), with evidence of evaporation (ca. + 8.2 ‰ d-excess). The differences observed in isotopic compositions are related to a combination of different factors, such as geological framework, groundwater recharge, and evaporation associated with the Itupararanga water reservoir. Both in FLONA and SOR, groundwater discharge is the most important factor that regulates streamflow. However, in SOR, losses from the water supply system were almost constant along the year, representing an important contribution. The results presented here highlight the use of isotope hydrology techniques to solve problems related to urban hydrology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.