Abstract

ABSTRACT This study evaluates the carbon neutrality of eco-slope protection projects to understand their role in climate change mitigation. Utilizing life cycle assessment, it defines system boundaries and compiles inventories to calculate and analyze carbon emissions and assimilations of a wet-spraying vegetation concrete eco-slope protection project in China, simplifying previous methodologies and emphasizing the critical role of vegetation. Findings indicate lifecycle carbon emissions total 608.01 tCO2e, broken down by source as follows: material (54.69%), maintenance (40.11%), energy (3.27%), transport (1.32%), and workforce (0.6%). Slope protection plants are estimated to assimilate 2,676.30 tCO2. The project is estimated to reach carbon neutrality in its 4.59th year, with an anticipated net carbon sink contribution of 2,068.29 tons over its lifespan. These results underscore eco-slope protection projects’ significant carbon neutral capacity, highlighting their importance in combating climate change and fostering the civil engineering industry's green transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call