Abstract
Biofilm formation is one of the leading causes of complications after surgery in clinical settings. In this study, we profiled the biofilm-forming ability of various periprosthetic infection-associated pathogens on medically relevant surfaces, polystyrene (PS) and titanium (Ti). We also explored how a specific environmental stressor, epigallocatechin gallate (EGCG), affected biofilm formation. First, Congo red tests revealed that all microorganisms formed biofilms within 72 h. Then, the amounts of biofilm formation on PS at 24, 48 and 72 h and also on a Ti plate for 72 h were determined. Some microbes preferred one surface over the other, whereas other microbes formed consistent levels of biofilm regardless of the surface material. Staphylococcus lugdunenensis was the most potent, while Enterococcus faecalis and Staphylococcus aureus were the weakest. Bacterial adhesion to hydrocarbon (BATH) tests indicated that the biofilm-forming abilities were not directly correlated with cell surface hydrophobicity (CSH). Finally, an external signal, EGCG, was applied to challenge the biofilm formation of each microorganism. EGCG regulated each microorganism’s ability differently, though the change was consistent across surfaces for most pathogens. This study can help a better understanding of a broad spectrum of periprosthetic infection-associated pathogens by relative comparison of their biofilm-forming abilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.