Abstract

The accuracy of five failure criterions employed in the study of periodontal ligaments (PDL) during periodontal breakdown under orthodontic movements was assessed. Based on cone-beam computed tomography (CBCT) examinations, nine 3D models of the second lower premolar with intact periodontium were created and individually subjected to various levels of horizontal bone loss. 0.5 N of intrusion, extrusion, rotation, tipping, and translation was applied. A finite Elements Analysis (FEA) was performed, and stresses were quantitatively and qualitatively analyzed. In intact periodontium, Tresca and Von Mises (VM) stresses were lower than maximum physiological hydrostatic pressure (MHP), while maximum principal stress S1, minimum principal stress S3, and pressure were higher. In reduced periodontium, Tresca and VM stresses were lower than MHP for intrusion, extrusion, and the apical third of the periodontal ligament for the other movements. 0.5 N of rotation, translation and tipping induced cervical third stress exceeding MHP. Only Tresca (quantitatively more accurate) and VM are adequate for the study of PDL (resemblance to ductile), being qualitatively similar. A 0.5 N force seems safe in the intact periodontium, and for intrusion and extrusion up to 8 mm bone loss. The amount of force should be reduced to 0.1–0.2 N for rotation, 0.15–0.3 N for translation and 0.2–0.4 N for tipping in 4–8 mm periodontal breakdown. S1, S3, and pressure criteria provided only qualitative results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call