Abstract

High-voltage electrical equipment insulation often uses composite materials like epoxy resin, cross-linked polyethylene, polyurethane, and silicone rubber as encapsulation. 3D printing technology offers a more efficient and cost-effective solution, producing intricate elements without cutting and casting. Research shows that 3D printed materials have comparable properties to polymer-based insulation, but further testing is needed to evaluate their resistance to harsh environmental conditions. This research investigates the arc resistance properties of 3D printed insulation materials for outdoor high-voltage applications, assessing their suitability for outdoor applications. The wet and dry arc resistance tests were performed in accordance with ASTM D495-99 and IEC-60587. The present work investigated three varieties of samples: polylactic acid, epoxy resin, and silicone rubber. The results of the tests reveal that polylactic acid test samples have average wet and dry arc resistance times of 2.5 hours and 1.4 seconds, which is less than silicone rubber and epoxy resin. Additional research is required to comprehend the behavior of arc formation in polylactic acid insulation materials for high-voltage 3D printing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.