Abstract
Crop simulation models play an essential role in evaluating irrigation management strategies for improving agricultural water use in crop production. In this study, the AquaCrop model was used to calibrate and validate the grain yield and biomass of 11 cultivars (9 winter wheat and 2 summer maize) under full and water-saving irrigation practices. The model results were verified with the available data from the published literature. Under the full irrigation practice, widely used by farmers in the region for winter wheat, the Normalized Root Mean Square Error (NRMSE) was found to be between 2.00–9.90% for grain yield, 2.40–10.85% for biomass, and 0.42–19.61% for water productivity. Under water-saving irrigation for winter wheat, the NRMSE range was found to be between 5.80–16.00% for grain yield, 3.70–17.30% for biomass, and 3.80–13.79% for water productivity. For summer maize, the NRMSE was 5.95%, 6.08%, and 16.41% under full irrigation, and 9.51%, 8.41%, and 3.60% under water-saving irrigation for grain yield, biomass, and water productivity, respectively. For winter wheat and summer maize, the simulation accuracy of grain yield was high under full irrigation, with percent deviations under ± 11.00%. In this study, the simulation accuracy for winter wheat was low under water-saving irrigation, while the model simulated the yield and biomass for summer maize to acceptable accuracy. The model can be reliably used as a tool to simulate grain yield and biomass across the NCP region for winter wheat and summer maize. However, the limitations of the model must be considered when simulating winter wheat under water-stressed conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.