Abstract

The goal of this study was to assess the anticancer efficacy of chlorojanerin against various cancer cells. The effects of chlorojanerin on cell cytotoxicity, cell cycle arrest, and cell apoptosis were examined using MTT assay, propidium iodide staining, and FITC Annexin V assay. RT-PCR was employed to determine the expression levels of apoptosis-related genes. Furthermore, docking simulations were utilized to further elucidate the binding preferences of chlorojanerin with Bcl-2. According to MTT assay, chlorojanerin inhibited the proliferation of all tested cells in a dose-dependent manner with a promising effect against A549 lung cancer cells with an IC50 of 10 µM. Cell growth inhibition by chlorojanerin was linked with G2/M phase cell cycle arrest in A549 treated cells. Flow cytometry analysis indicated that the proliferation inhibition effect of chlorojanerin was associated with apoptosis induction in A549 cells. Remarkably, chlorojanerin altered the expression of many genes involved in apoptosis initiation. Moreover, we determined that chlorojanerin fit into the active site of Bcl-2 according to the molecular docking study. Collectively, our results demonstrate that chlorojanerin mediated an anticancer effect involving cell cycle arrest and apoptotic cell death and, therefore, could potentially serve as a therapeutic agent in lung cancer treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.