Abstract
This study aimed to determine the phytoconstituents of Crateva religiosa bark (CRB) and evaluate the hypolipidemic effect of bioactive CRB extract by preventing adipocyte differentiation and lipogenesis. After performing the preliminary phytochemicals screening, the antioxidant activity of CRB extracts was determined through a DPPH (2, 2-diphenyl-1-picrylhydrazyl) assay. Ethyl acetate extract (CREAE) and ethanol extract (CRETE) of CRB were selected for chromatographic evaluation. The antihyperlipidemic potential was analyzed by molecular docking through the PKCMS software platform. Further, a 3T3-L1 cell line study via In vitro sulforhodamine B assay and western blotting was performed to confirm the prevention of adipocyte differentiation and lipogenesis Results: The total phenolic contents in CREAE and CRETE were estimated as 29.47 and 81.19 μg/mg equivalent to gallic acid, respectively. The total flavonoid content was found to be 8.78 and 49.08 μg/mg, equivalent to quercetin in CREAE and CRETE, respectively. CRETE exhibited greater scavenging activity with the IC50 value of 61.05 μg/ mL. GC-MS analysis confirmed the presence of three bioactive molecules, stigmasterol, gamma sitosterol, and lupeol, in CRETE. Molecular docking studies predicted that the bioactive molecules interact with HMG-CoA reductase, PPARγ, and CCAAT/EBP, which are responsible for lipid metabolism. In vitro, Sulforhodamine B assays revealed that CRETE dose-dependently reduced cell differentiation and viability. Cellular staining using 'Oil Red O' revealed a decreased lipid content in the CRETE-treated cell lines. CRETE significantly inhibited the induction of PPARγ and CCAAT/EBP expression, as determined through protein expression via western blotting. The influence of CRETE on lipid metabolism in 3T3-L1 cells is potentially suggesting a new approach to managing hyperlipidemia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.