Abstract

Several concrete structures had shown signs of degradation some years after construction due to internal expansive reactions. Among these reactions there are the alkali-aggregate reactions (AAR) that occur between the aggregates and the concrete interstitial fluids which can be divided in two types: the alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR). The more common is the ASR which occurs when certain types of reactive silica are present in the aggregates. In consequence, an expansive alkali-silica gel is formed leading to the concrete cracking and degradation. Granites are rocks composed essentially of quartz, micas and feldspars, the latter being the minerals which contain more alkalis in their structure and thus, able to release them in conditions of high alkalinity. Although these aggregates are of slow reaction, some structures where they were applied show evidence of deterioration due to ASR some years or decades after the construction. In the present work, the possible contribution of granitic aggregates to the interstitial fluids of concrete by alkalis release was studied by performing chemical attack with NaOH and KOH solutions. Due to the heterogeneity of the quarries in what concerns the degree of alteration and/or fracturing, rock samples with different alteration were analysed. The alteration degree was characterized both under optical microscope and image analysis and compared with the results obtained from the chemical tests. It was concluded that natural alteration reduces dramatically the releasable alkalis available in the rocks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.