Abstract

Minimizing energy consumption in the processing of parts on metal-cutting equipment is most effective at the stage of designing the content of operations. Important in this process is the precise determination of the initial parameters - cutting forces. This parameter allows you to plan both energy consumption and perform additional calculations for the deformation of the tooling and workpiece in order to predict the geometric accuracy of the machined part. The article presents the results of experiments on measuring the circumferential cutting force during milling operations of an aluminum alloy workpiece with an end mill. The measurements were carried out by an indirect method - by recording the electrical power on the spindle and then calculating the circumferential cutting force. Theoretical analysis of the methods of calculation of cutting forces showed significant differences between the results obtained by domestic methods and recommendations of world manufacturers of cutting tools. Statistical analysis of the results of calculations based on reference data and measurements made it possible to assess the adequacy of the known methods for calculating cutting forces in order to minimize energy consumption in operations of processing parts on metal-cutting equipment

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.