Abstract

ANOVA gauge repeatability and reproducibility study is the most popular tool for measurement system analysis. Two experimental designs can be applied depending on the durability of the objects. If repeated measurements are possible or sufficient homogeneous nonrepeatable samples are available, crossed design is appropriate; otherwise, nested design should be used. In this paper, we investigated the adequacy of ANOVA gauge repeatability and reproducibility study from the perspective of practitioners. We proposed a Monte Carlo simulation that is close to the realistic procedure to evaluate the adequacy of both structures. During the evaluation, we considered the average performance metrics, percentage of correct decision, histogram shape, and symmetric mean absolute percentage error for the four popular performance metrics, namely, % Study Variation, % Contribution, % Tolerance, and the number of distinct categories. The experimental results show that the nested design fails to judge the precision of the gauge while the crossed design succeeds.

Highlights

  • Gauge repeatability and reproducibility (GRR) study is a representative measurement system analysis (MSA) tool [1]

  • We investigated the adequacy of analysis of variance (ANOVA) gauge repeatability and reproducibility study from the perspective of practitioners

  • We evaluated the adequacy of the AGRR from the perspective of practitioners

Read more

Summary

Introduction

Gauge repeatability and reproducibility (GRR) study is a representative measurement system analysis (MSA) tool [1]. After the AGRR was introduced by Montgomery and Runger [2, 3], it became the most popular tool for MSA as it considers the interaction effects and provides interval estimates for the variance components and the performance metrics [4]. The ANOVA in AGRR measures the variability of observations and estimates variance components. The performance metrics, which are composed of sums or ratios of the estimated variance components, provide the criteria used to analyze the precision for the measurement system. Though the measured object is nonrepeatable, if sufficient homogeneous samples are captured, the crossed design will be appropriate [5]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call