Abstract

Satellite laser ranging (SLR) to the geodetic satellites LAGEOS and LAGEOS-2 uniquely determines the origin of the terrestrial reference frame and, jointly with very long baseline interferometry, its scale. Given such a fundamental role in satellite geodesy, it is crucial that any systematic errors in either technique are at an absolute minimum as efforts continue to realise the reference frame at millimetre levels of accuracy to meet the present and future science requirements. Here, we examine the intrinsic accuracy of SLR measurements made by tracking stations of the International Laser Ranging Service using normal point observations of the two LAGEOS satellites in the period 1993 to 2014. The approach we investigate in this paper is to compute weekly reference frame solutions solving for satellite initial state vectors, station coordinates and daily Earth orientation parameters, estimating along with these weekly average range errors for each and every one of the observing stations. Potential issues in any of the large number of SLR stations assumed to have been free of error in previous realisations of the ITRF may have been absorbed in the reference frame, primarily in station height. Likewise, systematic range errors estimated against a fixed frame that may itself suffer from accuracy issues will absorb network-wide problems into station-specific results. Our results suggest that in the past two decades, the scale of the ITRF derived from the SLR technique has been close to 0.7 ppb too small, due to systematic errors either or both in the range measurements and their treatment. We discuss these results in the context of preparations for ITRF2014 and additionally consider the impact of this work on the currently adopted value of the geocentric gravitational constant, GM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call