Abstract

By using close range photogrammetry, this article investigates the accuracy of the photogrammetric estimation of rock joint roughness coefficients (JRC), a measure of the degree of roughness of rock joint surfaces. This methodology has proven to be convenient both in laboratory and in site conditions. However, the accuracy and precision of roughness profiles obtained from photogrammetric 3D images have not been properly established due to the variances caused by factors such as measurement errors and systematic errors in photogrammetry. In this study, the influences of camera-to-object distance, focal length and profile orientation on the accuracy of JRC values are investigated using several photogrammetry field surveys. Directional photogrammetric JRC data are compared with data derived from the measured profiles, so as to determine their accuracy. The extent of the accuracy of JRC values was examined based on the error models which were previously developed from laboratory tests and revised for better estimation in this study. The results show that high-resolution 3D images (point interval ≤1 mm) can reduce the JRC errors obtained from field photogrammetric surveys. Using the high-resolution images, the photogrammetric JRC values in the range of high oblique camera angles are highly consistent with the revised error models. Therefore, the analysis indicates that the revised error models facilitate the verification of the accuracy of photogrammetric JRC values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.