Abstract

This paper introduces an original 1-fluid method for direct simulation of the motion of rigid particles in fluids. The model is based on the implicit treatment of a single fictitious fluid over a fixed grid, and uses an augmented Lagrangian optimization algorithm for the velocity–pressure coupling. The paper focuses on the case of a rigid sphere settling in a viscous medium. For validation purposes, simulations of the transient motion of a sedimenting sphere at Reynolds numbers ranging from 1.5 to 31.9 are compared to the PIV data published by Ten Cate et al. [Ten Cate A, Nieuwstad CH, Derksen JJ, Van den Akker HEA. Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity. Phys Fluids 2002;14(11):4012–25]. Accurate reproduction of the experimental data is obtained. Further simulations are intended to investigate higher Reynolds numbers. Predictions of transient particle sedimentation at Reynolds number 280 are performed and compared with experimental data of the sedimentation trajectory, as well as with simulation results based on the lattice-Boltzmann method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.