Abstract

Abstract. The 1783 Scilla landslide–tsunami (Calabria, southern Italy) is a well-studied event that caused more than 1500 fatalities on the beaches close to the town. This paper complements a previous work that was based on numerical simulations and was focused on the very local effects of the tsunami in Scilla. In this study we extend the computational domain to cover a wider portion of western Calabria and northeastern Sicily, including the western side of the Straits of Messina. This investigation focuses on Capo Peloro area (the easternmost cape of Sicily), where the highest tsunami effects outside Scilla were reported. Important tsunami observations, such as the wave height reaching 6 m at Torre degli Inglesi and flooding that reached over 600 m inland, have been successfully modeled but only by means of a high-resolution (10 m) topo-bathymetric grid, since coarser grids were inadequate for the purpose. Interestingly, the inundation of the small lake of Pantano Piccolo could not be reproduced by using today's coastal morphology, since a coastal dune now acts as a barrier against tsunamis. Historical analysis suggests that this dune was not in place at the time of the tsunami occurred and that a ground depression extending from the lake to the northern coast is a remnant of an ancient channel that was used as a pathway in Roman times. The removal of such an obstacle and the remodeling of the coeval morphology allows the simulations to reproduce the tsunami penetration up to the lake, thus supporting the hypothesis that the 1783 tsunami entered the lake following the Roman channel track. A further result of this study is that the computed regional tsunami propagation pattern provides a useful hint for assessing tsunami hazards in the Straits of Messina area, which is one of the most exposed areas to tsunami threats in Italy and in the Mediterranean Sea overall.

Highlights

  • The recent catastrophic tsunamis of Sumatra (2004), Japan (2011), and Sulawesi (2018) have raised the interest in such natural phenomena worldwide, including Europe

  • This paper complements a previous work that was based on numerical simulations and was focused on the very local effects of the tsunami in Scilla

  • In this study we extend the computational domain to cover a wider portion of western Calabria and northeastern Sicily, including the western side of the Straits of Messina

Read more

Summary

Introduction

The recent catastrophic tsunamis of Sumatra (2004), Japan (2011), and Sulawesi (2018) have raised the interest in such natural phenomena worldwide, including Europe. In the Mediterranean Sea, tsunamis are known to be of smaller magnitude than in the Pacific and in the Indian Oceans, but their effects can be as lethal, owing to the high coastal exposure and vulnerability, which has been constantly growing in recent decades as the result of an increased coastal occupation (see Papadopoulos et al, 2014). This creates the need for more detailed assessments of tsunami hazards and of the consequences of tsunami impact, which implies the need for more accurate numerical simulation tools.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call