Abstract

The aim of the current research was to evaluate the tensile bond strength of a soft liner to the denture base resin with different surface management techniques. Dies made up of stainless steel and having dimensions of 40 × 10 × 10 were used to fabricate polymethyl-methacrylate resinous blocks. To make sure of the regularity of the soft liner in the test, dies made up of stainless steel and having dimensions of 10 × 10 × 3 were fabricated to serve as spacers. These acrylic resinous blocks were allocated to three groups depending upon the particular surface management technique as: group I-Absence of surface treatment (Control), group II-Surface management with methyl methacrylate (MMA) monomer, and group III-Surface management with Phosphoric acid. All the samples underwent thermocycling at 5° centigrade and 55° centigrade in two water baths for 500 cycles at a dwell tenure of 30 seconds in every bath to reproduce the oral circumstances. The samples were then subjected to testing in the universal testing machine for evaluation of the tensile strength. The highest tensile strength was noted in the soft liner with denture base resin that was subjected to treatment with a monomer having a mean score of 1.88 ± 0.11 in pursuit by surface management using phosphoric acid at 1.16 ± 0.90 as well as the control group at 0.94 ± 0.02 in that order. There was a statistically noteworthy disparity amid the three dissimilar surface management techniques with a p-value <0.001. There was a statistically noteworthy differentiation amid group I vs group II as well as group II vs group III with a p-value <0.001. However, there was no statistically significant disparity amid group I vs group III with p-value >0.001. The current research arrived at the conclusion that the samples subjected to treatment with MMA monomer exhibited higher and noteworthy bond strength than those attained by additional surface management techniques for soft lining of the denture base resins. Soft denture lining materials play a pivotal position in contemporary prosthodontic practice as they possess the ability to restore the health of swollen as well as deformed mucosal tissues. They are comfortable in those individuals who are unable to endure pressure from occlusal forces, like in a situation of residual ridge resorption, sore tissues, and ridges that attain a knife-edge shape. Failing bond causes delamination of the reliner and therefore lack of adaptability of the denture to the oral mucosal tissues. For this reason, superior bonding to the denture base beneath is critical for the clinical triumph of relining agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call