Abstract

AbstractCharacteristics of temperature inversions (TIs) and specific humidity inversions (SHIs) and their relationships in three of the latest global reanalyses—the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-I), the Japanese 55-year Reanalysis (JRA-55), and the ERA5—are assessed against in situ radiosonde (RS) measurements from two expeditions over the Arctic Ocean. All reanalyses tend to detect many fewer TI and SHI occurrences, together with much less common multiple TIs and SHIs per profile than are seen in the RS data in summer 2008, winter 2015, and spring 2015. The reanalyses generally depict well the relationships among TI characteristics seen in RS data, except for the TIs below 400 m in summer, as well as above 1000 m in summer and winter. The depth is simulated worst by the reanalyses among the SHI characteristics, which may result from its sensitivity to the uncertainties in specific humidity in the reanalyses. The strongest TI per profile in RS data exhibits more robust dependency on surface conditions than the strongest SHI per profile, and the former is better presented by the reanalyses than the latter. Furthermore, all reanalyses have difficulties simulating the relationships between TIs and SHIs, together with the correlations between the simultaneous inversions. The accuracy and vertical resolution in the reanalyses are both important to properly capture occurrence and characteristics of the Arctic inversions. In general, ERA5 performs better than ERA-I and JRA-55 in depicting the relationships among the TIs. However, the representation of SHIs is more challenging than TIs in all reanalyses over the Arctic Ocean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call