Abstract

The collapsing phenomenon of cavitation bubbles generates extremely high local pressures and temperatures that can be utilized for the chemical oxidation process. This process is carried out in cavitation reactors. A Venturi tube is one of the most common forms of hydrodynamic cavitation reactors, which is suitable for industrial scale applications. In this work, the hydraulic performance and efficiency in chemical reaction of a new form of hydrodynamic cavitation reactors, which is called “tandem Venturi,” were studied and compared with the conventional type of the single Venturi. The tandem Venturi is used for enhancement of the chemical reaction of hydrodynamic cavitating flow. The reaction enhancement is useful especially for the reaction of aqueous solutions not containing volatile organic compounds (VOCs). The operating pressure, inlet pressure, flow rate, and consequently the cavitation number were controlled and systematically varied for both single and tandem Venturis. Moreover, a specified amount of H2O2 was injected into the flow as required. The effects of operating pressure and the cavitation number on cavitating flow characteristics for single and tandem Venturis were experimentally observed and the results were compared. In addition, the performance of the tandem-Venturi reactor for degradation of non-VOC contaminants (2-chlorophenol) was studied. Its performance was compared with the performance of a conventional Venturi reactor. Two different categories were conducted for the experiments. In the first category, the effect of the net cavitating flow on degradation of non-VOC for the single and tandem Venturis was compared. In the second category, the effect of H2O2 injection into the cavitating flow on degradation of non-VOC (“cavitation-oxidation” process) was studied. The performance of the single and tandem Venturis for the cavitation-oxidation process was compared. Further investigation was performed to assess the advantage of utilizing the tandem Venturi from the viewpoint of efficiency of the oxidation process. The results of the energy efficiency were compared with the corresponding efficiency of the single Venturi. Finally, the relationship between the main parameters of cavitation reaction flow with the chemical performance was discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.