Abstract

Paenibacillus alvei NP75, a Gram-positive bacterium, produces two different antimicrobial peptides, paenibacillin N and P, which has potent antimicrobial activity against many clinical pathogens. The synthesis pattern of these antimicrobial peptides by P. alvei NP75 was studied extensively. The results were outstanding in a way that the paenibacillin N was synthesized irrespective of the growth of bacteria (non-ribosomal mediated), whereas paenibacillin P production was carried out by ribosomal mediated. In addition to the antimicrobial peptides, P. alvei NP75 also produces an immunogenic extracellular protease to defend itself from its own antimicrobial peptide, paenibacillin P. Furthermore, this immunogenic protease production was impaired by the addition of protease inhibitor, phenylmethylsulfonyl fluoride (PMSF). The sodium dodecyl sulfate (SDS) treated strain (mutant) failed to produce paenibacillin P, whereas the production of neither paenibacillin N nor the protease was affected by the plasmid curing. The plasmid curing studies that divulge the genes responsible for the synthesis of paenibacillin N and protease were found to be genome encoded, and paenibacillin P was plasmid encoded. We are reporting, first of its kind, the co-production of two different antimicrobial peptides from P. alvei NP75 through non-ribosomal and ribosomal pathways that could be used as effective antibiotics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call