Abstract
Surface soil moisture knowledge is important, especially in agriculture and irrigation management. Properties of microwave remote sensing like penetration power and longer wavelength facilitate retrieval of surface soil moisture. ALOS PALSAR-2, quad polarized data are used to retrieve surface soil moisture using polarization decomposition techniques in a marginal farmer small-scale maize field. The focus of the study is to explore the utility of ALOS PALSAR-2 in retrieving surface soil moisture using the polarization decomposition technique. The demonstration of the study is carried out in Malavalli village, southern India, an agricultural predominant area. The study involves field soil moisture sampling in synchronous with satellite pass, measuring soil properties, preprocessing of SAR data, polarization decomposition, proportional analysis, regression analysis, model calibration and validation. Van Zyl decomposition gave the highest surface scattering component (43%) and reduced volumetric scattering component compared to Yamaguchi and Freeman–Durden decomposition. Surface scattering component of Yamaguchi decomposition gave a good coefficient of determination (R2 = 0.8029) with field-measured surface soil moisture. The semi-empirical model (SEM) was developed using surface scattering component and depolarization ratio with adjusted R2 = 0.75 at 95% confidence interval. On its comparison with existing soil moisture models, it is observed that the developed model is performing well with RMSE and AEmax of 1.81 and 2.88, respectively. Implying the applicability of ALOS PALSAR-2 in soil moisture retrieval in marginal farmer small-scale maize fields gave satisfactory results of accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.