Abstract

This in vitro study aimed to analyze the surface roughness (Ra) and color stability (ΔEab, ΔE00) following simulated mechanical brushing and to evaluate the microtensile (μTBS) of self-adhering resin flowable (SARF) to dentin. The selected materials were Constic, Yflow AS, and Tetric N flow (TNF/control). Thirty composite resin cylinders were fabricated for surface property evaluation. Ra and color were assessed both before and after simulated brushing. The thresholds of 50:50% perceptibility and acceptability of color differences in the evaluated resins were assessed. For μTBS analysis, fifteen molars were selected, sectioned to expose flat dentin surfaces, and restored according to the manufacturers' instructions for microtensile testing. There were statistically significant differences in Ra among the groups, with Constic exhibiting the highest Ra value (0.702 µm; p < 0.05), whereas Yflow AS presented the lowest Ra value (0.184 µm). No statistically significant difference in color was observed among the groups (p > 0.05). The 50:50% perceptibility and acceptability thresholds were set at 1.2 and 2.7 for ΔEab and 0.8 and 1.8 for ΔE 00. All the results fell within the acceptable limits. The mean μTBS values of Constic, Yflow AS, and TNF were 10.649 MPa, 8.170 MPa, and 33.669 MPa, respectively. This study revealed increased Ra and comparable color stability among all the tested composite resins after abrasion. However, the SARF exhibited lower μTBS compared to conventional using an adhesive system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.