Abstract
The objective of the present work was to assess the surface properties of silica-cell complexes formed by Bacillus pumilus strain SKC-2 for bioflotation purposes. This bacterial strain was employed in this study because it is a Gram-positive, mixotrophic bacterium whose metal binding capacity extends to many different metals and circumstances as well as a biosurfactant producer. The strain was found to promote the formation of silica-cell complexes due to the generation of surface-active agents (i.e., extracellular polymeric substrances (EPS)) as represented by scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM-EDS) observation. Surface properties of the complexes was assessed by water contact angle and surface tension measurements, demonstrating that bacterial cells reduced the surface tension of the solutions and increased the contact angle of the silica surfaces, representing a larger hydrophobic property. Therefore, the findings of this study provide clear evidence for the potential application of the bacterium Bacillus pumilus strain SKC-2 for silicate bioflotation processes (i.e., as frother and collector).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.