Abstract
Geophysical techniques such as gravity, magnetic and seismology are perfect tools for detecting subsurface structures of local, regional as well as of global scales. The study of the earthquake records can be used for differentiating the active and non-active fault elements. In the current study, more than 2,200 land magnetic stations have been measured using two proton magnetometers. The data are corrected for diurnal variations and then reduced by the International Geomagnetic Reference Field. The corrected data have been interpreted by different techniques after filtering the data to separate shallow sources (basaltic sheet) from the deep sources (basement complex). Both Euler deconvolution and 3-D magnetic modeling were carried out. The results of interpretation indicate that the depth to the upper surface of basaltic sheet ranges from <10 to 600 m, depth to the lower surface ranges from 60 to 750 m, while the thickness of the basaltic sheet varies from <10 to 450 m. Moreover, gravity measurements are conducted at 2,250 stations using a CG-3 gravimeter. The measured values are corrected to construct a Bouger anomaly map. The least squares technique is then applied for regional–residual separation. The third order of least squares is found to be the most suitable to separate the residual anomalies from the regional one. The resultant third-order residual gravity map is used to delineate the structural fault systems of different characteristic trends. The trends show an NW–SE trend parallel to that of Gulf of Suez, an NE–SW trend parallel to the Gulf of Aqaba and an E–W trend parallel to that of the Mediterranean Sea. Taking seismological records into consideration, it is found that most of the 24 earthquake events recorded in the study area are located on fault elements. This gives an indication that the delineated fault elements are active.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.