Abstract

BackgroundIn 2005, China established an internet-based Tuberculosis Information Management System (TBIMS) to monitor changes in tuberculosis (TB). Many scholars have conducted epidemiological research using TBIMS; however, few studies assessing control strategies have been performed based on this platform data. Henan province is a high TB incidence area in China where, in addition to following the nationwide TB strategies, a series of local intervention combinations have been implemented.ObjectiveOur study aims to evaluate the impact of nationwide TB intervention combinations on epidemiological changes and determine whether Henan province can achieve the World Health Organization’s (WHO) goal of reducing TB incidence by 50% and TB mortality by 75% by the year 2025.MethodsWe used descriptive statistical methods to show the spatial and temporal distribution of pulmonary tuberculosis (PTB) reported to the TBIMS database from 2005 to 2018, and logistic regression analysis was performed to identify the risk factors of bacteriological-positive TB. The dynamic compartmental model and Bayesian melding approach was adopted to estimate the burden of TB under the impact of different TB control policies.ResultsIn total, 976,526 PTB cases were notified to the TBIMS in Henan in a period of 14 years. Although the overall incidence of PTB declined from 91.4/105 to 58.5/105, and the overall incidence of bacteriological-positive PTB declined from 44.5/105 to 14.7/105, the WHO’s 2025 goal could not be met. The distribution of high incidence and poverty-stricken counties were basically overlapped. Men, farmers and herdsmen (in rural areas), and subjects aged ≥60 years were more likely to develop bacteriological-positive PTB. The increasing treatment success for drug-susceptible tuberculosis and multidrug-resistant tuberculosis has not provided the desired reduction in incidence and mortality.ConclusionsTo achieve the targeted goal, while improving the cure rate of TB, new active (rather than passive) detection and intervention strategies should be formulated based on epidemiological characteristics in Henan province.

Highlights

  • MethodsWe used descriptive statistical methods to show the spatial and temporal distribution of pulmonary tuberculosis (PTB) reported to the Tuberculosis Information Management System (TBIMS) database from 2005 to 2018, and logistic regression analysis was performed to identify the risk factors of bacteriological-positive TB

  • In 2005, China established an internet-based Tuberculosis Information Management System (TBIMS) to monitor changes in tuberculosis (TB)

  • Implementation of the directly observed treatment short-course (DOTS) chemotherapy strategy led to a 65% reduction in the prevalence of smear-positive tuberculosis (TB) in China between 1990 and 2010 [1]

Read more

Summary

Methods

We used descriptive statistical methods to show the spatial and temporal distribution of pulmonary tuberculosis (PTB) reported to the TBIMS database from 2005 to 2018, and logistic regression analysis was performed to identify the risk factors of bacteriological-positive TB. Since January 1, 2005, PTB cases are reported to the TBIMS, the national TB surveillance system, within 24 hours of diagnosis [3]. A hierarchical clustering method was used to identify similar regions based on the overall and bacteriological-positive PTB incidence rates, which were compared with the distribution of poverty-stricken regions in Henan province. Univariable and multivariable logistic regression models were applied in order to investigate the factors associated with bacteriological-positive PTB, and unadjusted odds ratios (OR) and adjusted odds ratios (AOR) were estimated

Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.