Abstract

BackgroundStormwater is water resulting from precipitation events and snowmelt running off the urban landscape, collecting in storm sewers, and typically being released into receiving water bodies through outfalls with minimal to no treatment. Despite a growing body of evidence observing its deleterious pollution impacts, stormwater management and treatment in cold climates remains limited, partly due to a lack of quality and loading data and modeling parameters. This study examines the quality of stormwater discharging during the summer season in a cold-climate, semi-arid Canadian city (Saskatoon, Saskatchewan).ResultsSeven stormwater outfalls with mixed-land-use urban catchments > 100 km2 were sampled for four summer (June–August 2019) storm events and analyzed for a suite of quality parameters, including total suspended solids (TSS), chemical oxygen demand (COD), dissolved organic carbon (DOC), metals, and targeted polyaromatic hydrocarbons (PAHs). In addition, assessment of stormwater toxicity was done using the two toxicity assays Raphidocelis subcapitata (algae) and Vibrio fischeri (bacteria). Notable single-event, single-outfall contaminant pulses included of arsenic (420 µg/L), cadmium (16.4 µg/L), zinc (924 µg/L), fluorene (4.95 µg/L), benzo[a]pyrene (0.949 µg/L), pyrene (0.934 µg/L), phenanthrene (1.39 µg/L), and anthracene (1.40 µg/L). The IC50 in both R. subcapitata and V. fischeri was observed, if at all, above expected toxicity thresholds for individual contaminant species. Principal component analysis (PCA) showed no clear trends for individual sampling sites or sampling dates. In contrast, parameters were correlated with each other in groups including DOC, COD, TSS, and reduced algal toxicity; and total dissolved solids (TDS), sum of metals, and pH.ConclusionsIn general, stormwater characteristics were similar to those of previous studies, with a bulk of contamination carried by the first volume of runoff, influenced by a combination of rainfall depth, antecedent dry period, land use, and activity within the catchment. Roads, highways, and industrial areas contribute the bulk of estimated contaminant loadings. More intensive sampling strategies are necessary to contextualize stormwater data in the context of contaminant and runoff volume peaks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.