Abstract

A novel biosensor for lactate has been developed, using screen-printed carbon electrodes (SPCE) and lactate oxidase (LOx). The active surface of the electrodes was modified using a dispersion of platinum nanoparticle decorated carbon nanofibers (PtNp-CNF) in poly(diallyldimethylammonium) chloride (PDDA) solution. In this way, sensitive, disposable, low cost and reliable hydrogen peroxide sensors were obtained. The immobilisation of LOx on top of these PtNp-CNF-PDDA/SPCEs resulted in amperometric biosensors with high operational stability. The sensitivity of the optimised lactate biosensor was 36.8 (mA/M cm2) with a linear range of 25–1500 µM. The limit of detection was 11 µM (S/N=3). Reproducibility, selectivity and storage stability were also evaluated. Additionally, the stability of the biosensor was also predicted by a model based on thermal degradation. Finally, lactate in sweat and blood samples was determined in a sport test using LOx/PtNp-CNF-PDDA/SPCEs and commercial biosensors respectively. Based on these data, the validity of the sweat lactate for the determination of the lactate threshold is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call