Abstract

In this study, a novel three-compartmental population balance model (PBM) for a continuous twin screw wet granulation process is developed, combining the techniques of PBM and regression process modeling. The developed model links screw configuration, screw speed, and blend throughput with granule properties to predict the granule size distribution (GSD) and volume-average granule diameter. The granulator screw barrel was divided into three compartments along barrel length: wetting compartment, mixing compartment, and steady growth compartment. Different granulation mechanisms are assumed in each compartment. The proposed model therefore considers spatial heterogeneity, improving model prediction accuracy. An industrial data set containing 14 experiments is applied for model development. Three validation experiments show that the three-compartmental PBM can accurately predict granule diameter and size distribution at randomly selected operating conditions. Sixteen combinations of aggregation and breakage kernels are investigated in predicting the experimental GSD to best judge the granulation mechanism. The three-compartmental model is compared with a one-compartmental model in predicting granule diameter at different experimental conditions to demonstrate its advantage. The influence of the screw configuration, screw speed and blend throughput on the volume-average granule diameter is analyzed based on the developed model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.