Abstract

Potentially toxic elements such as heavy metals are ubiquitous in the environment. Risk-based environmental management relies upon identifying pollution sources, pathways, and the exposed population. In a Chinese urban setting, many residents live in high-rise buildings without private gardens. Therefore, the main residential risk of exposure to contaminated soils and dusts may be associated with public open spaces. As children are the most vulnerable receptor, playgrounds represent an important yet often overlooked exposure point. The present study assessed plausible sources of heavy metals at children's playgrounds in a representative metropolitan environment. Soil and equipment dust samples were collected from 71 playgrounds across Beijing, which were analyzed for 11 different heavy metals. Principal component analysis (PCA) was used to identify the latent constructs which control heavy metal variability and reflect potential sources. Cluster analysis (CA) was conducted to group sampled locations, which provided further insights on plausible sources. The main factors extracted from the PCA were then subject to geostatistical analysis. The systematic combination of GIS with multivariate statistical analysis proved valuable for elucidating anthropogenic and natural sources. Elevated Be, V, Cr, Mn, Co, Ni, As in playground soils were found to derive mainly from the natural background (spatial autocorrelation = 2 km), while elevated Cu and Pb was attributed to traffic activities (spatial autocorrelation = 17 km), especially along the routes of Beijing's inner ring-roads, the major roads toward the northwest and northeast, and the international airport. These results suggest that heavy metals in playground equipment dust may derive mainly from atmospheric deposition of air pollution of both natural and anthropogenic origin (spatial autocorrelation = 11–13 km). Among them, Be, V, Mn, Co, Cu, As, Pb were attributed to atmospheric pollution deriving from the north of Beijing, brought by the prevailing northern wind in the winter season; whereas, Cr and Ni may possibly be brought from the southeast by the summer season winds. Knowledge of anthropogenic vs. natural origins of heavy metals in playgrounds is critical in assessing health impact and designing policy instruments for metropolitan areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call