Abstract

To study the effects of salinity on different species of Aegilops that have salinity tolerance genes, a factorial experiment was carried out using completely randomized design with three replications in Biotechnology Laboratory of Guilan University in 2014. Morphologic (length, fresh and dry weight of shoot and root, stem diameter, and number of tillers) and physiologic (Electrolyte Leakage, RWC, Chlorophyll content and antioxidants enzymes) traits of 12 Aegilops genotypes from four species; Ae. tauschii, Ae. crassa, Ae. cylindrical,and Ae. triuncialis were measured under salinity stress conditions. Assessment of morphological and physiological traits showed that genotypes belong to Ae. cylindrical had more tolerance to salinity stress than other genotypes. Genotype 575 from Ae. cylindrical as tolerant genotype and genotype 675 from Ae. crassa as susceptible genotype were identified and used for biochemical assay. The results showed peroxidase (POD) and ascorbate peroxidase (APX) enzymes' activity increased and catalase (CAT) enzyme activity decreased under salinity stress. Following stress treatment, enzyme activity in genotype 575 was higher than 675 showing antioxidant enzyme in tolerant genotype performs more than susceptible genotype.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call