Abstract

Ecological risks can vary dramatically depending on abiotic factors, such as soil properties and the background values of elements. This study developed a framework for an integrated risk assessment system to derive soil quality criteria (SQC) for heavy metals (HMs) applicable to different soil types and to assess ecological risks at a multi-regional scale. Through the construction of normalization and species sensitivity distribution models, 248 SQC values for Cd, Pb, Zn, As, Cu, Cr, Sb, and Ni in 31 Chinese provinces were derived. These SQC considered the soil types and background values of the elements and effectively reduced the uncertainty caused by spatial heterogeneity. Using the derived SQC values, the qualitative and quantitative ecological risks of HMs in the terrestrial environment of China were comprehensively assessed using a three-level ecological risk assessment (ERA) approach. Compared to traditional ERA methods, the new methodology reached a more quantitative conclusion. The mean overall probabilities of ecological risk in China were 2.42 % (Cd), 2.82 % (Pb), 12.17 % (Zn), 14.89 % (As), 10.42 % (Cu), 32.20 %(Cr), and 8.88 % (Ni). The new framework could be useful for the ERA of various soil types.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.