Abstract

The purpose of this study is to quantify soil surface erosion using the Universal Soil Loss Equation in GIS environment and to assess its impact on soil humus reserve. The quantifying of soil surface erosion was performed by integrating in GIS the thematic raster representations of the erosion control parameters which exhibit spatial variability within the limi ts of the study region (Dobrovăţ Basin, The Central Moldavian Plateau, eastern Romania). Soil erodibility was computed according to ICPA (1987) standards, on the basis of soil type, texture and erosion degree, using a soil map of the basin at scale 1: 5000. Slope length was derived from a 20m resolution digital elevation model using SAGA-GIS software, while slope factor was determined according to the Romanian methodology by raising the slope values at the power of 1.5. Finally, the vegetation factor was computed on the basis of the normalized difference vegetation index derived from a 2001 Landsat image, using the equation proposed by Van der Knijff et al. (1999). Subsequently, we derived the potential soil erosion, controlled exclusively by soil-relief factors and the effective soil erosion, by integrating the effect of vegetation. The potential soil erosion show a mean value of 15.6 t/ha yr and a standard deviation of 16.6 t/ha yr. The integration of the vegetation effect decreases the mean value to 5.4 t/ha yr and the standard deviation to 6.7 t/ha yr. Most of the basin’s surface (48.7%) falls into the reduced erosion risk class (2-8 t/ha yr), while the high and very high erosion risk classes group 7.3% of the basin. The assessment of the erosion impact on soil carbon stock was performed by coupling the USLE model with a Hénin -Dupuis mono-compartmental humus evolution model. The simulation was performed for the first 20cm of the soil profile, using a database of 224 soil profiles. The results of the simulation show that 76% of the soil profiles display a regressive evolution of the humus reserve under the impact of the soil erosion. The mean humus loss for these profiles is 36.3 t/ha for 100 years of simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call